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Abstract This paper is one of many attempts to introduce graphical Markov
models within Dempster-Shafer theory of evidence. Here we take full advan-
tage of the notion of factorization, which in probability theory (almost) coin-
cides with the notion of conditional independence. In Dempster-Shafer theory
this notion can be quite easily introduced with the help of the operator of
composition.

Nevertheless, the main goal of this paper goes even further. We show that
if a belief network (a D-S counterpart of a Bayesian network) is to be used to
support decision, one can apply all the ideas of Lauritzen and Spiegelhalter’s
local computations.

Key words: Operator of composition, Factorization, Decomposable models,
Conditioning.

1 Introduction

Graphical Markov models (GMM) [9], a technique which made computations
with multidimensional probability distributions possible, opened doors for
application of probabilistic methods to problem of practice. Here we have in
mind especially application of the technique of local computations for which
theoretical background was laid by Lauritzen and Spiegelhalter [10]. The
basic idea can be expressed in a few words: a multidimensional distribution
represented by a Bayesian network is first converted into a decomposable
model which allows for efficient computation of conditional probabilities.

The goal of this paper is to show that the same ideas can be employed
also within Dempster-Shafer theory of evidence [11].
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In this paper we consider a finite setting: space XN = X1×. . .×Xn, and its
subspaces (for K ⊆ N) XK =×i∈KXi. For a point x = (x1, . . . , xn) ∈ XN

its projection into subspace XK is denoted x↓K = (xi,i∈K). Analogously, for
A ⊆ XN , A↓K = {y ∈ XK : ∃x ∈ A, x↓K = y}. By a join of two sets A ⊆ XK

and B ⊆ XL we understand a set

A⊗B = {x ∈ XK∪L : x↓K ∈ A & x↓L ∈ B}.

Notice that if K and L are disjoint, then A ⊗ B = A × B, if K = L then
A⊗B = A ∩B.

In view of this paper it is important to realize that for C ⊆ XK∪L,
C ⊆ C↓K ⊗ C↓L, and that the equality C = C↓K ⊗ C↓L holds only for
some of them.

2 Basic Assignments

A basic assignment (ba) m on XK (K ⊆ N) is a function m : P(XK)→ [0, 1],
for which ∑

∅6=A⊆XK

m(A) = 1.

If m(A) > 0, then A is said to be a focal element of m. Recall that

Bel(A) =
∑
∅6=B⊆A

m(B), and Pl(A) =
∑

B⊆XK :B∩A6=∅

m(B).

Having a ba m on XK one can consider its marginal assignment on XL

(for L ⊆ K), which is defined (for each ∅ 6= B ⊆ XL):

m↓L(B) =
∑

A⊆XK :A↓L=B

m(A).

Definition 1 (Operator of composition). For two arbitrary ba’s m1 on
XK and m2 on XL (K 6= ∅ 6= L) a composition m1 . m2 is defined for each
C ⊆ XK∪L by one of the following expressions:

[a] if m↓K∩L
2 (C↓K∩L) > 0 and C = C↓K ⊗ C↓L then

(m1 . m2)(C) =
m1(C↓K) ·m2(C↓L)

m↓K∩L
2 (C↓K∩L)

;

[b] if m↓K∩L
2 (C↓K∩L) = 0 and C = C↓K ×XL\K then

(m1 . m2)(C) = m1(C↓K);

[c] in all other cases (m1 . m2)(C) = 0.
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Let us stress that the operator of composition is something other than
the famous Dempster’s rule of combination [2]. While Dempster’s rule was
designed to combine different (independent) sources of information (it real-
izes fusion of sources), the operator of composition was designed to assemble
(compose) factorizing basic assignments from their pieces. Notice that, e.g.,
for computation of (m1 . m2)(C) it suffices to know only the values of m1

and m2 for the respective projections of set C, whereas computing Dempster’s
combination of m1 and m2 for set C requires knowledge of, roughly speaking,
the entire basic assignments m1 and m2. This is an indisputable (computa-
tional) advantage of the factorization considered in this paper. Unfortunately,
the operator of composition is neither commutative nor associative. In [8, 7]
we proved a number of properties concerning the operator of composition;
the following ones are the most important for the purpose of this paper.

Proposition 1. Let m1 and m2 be ba’s defined on XK , XL, respectively.
Then:

1. m1 . m2 is a ba on XK∪L;
2. (m1 . m2)↓K = m1;
3. m1 . m2 = m2 . m1 ⇐⇒ m↓K∩L

1 = m↓K∩L
2 .

From Property 1 one immediately gets that for basic assignments m1,m2,
. . . ,mr defined on XK1 ,XK2 , . . . ,XKr

, respectively, the formula m1 . m2 .
. . . . mr defines a (possibly multidimensional) basic assignment defined on
XK1∪...∪Kr . However, to avoid ambiguity (recall that the operator is not
associative) we have to say that, if not specified otherwise by parentheses,
the operators will always be applied from left to right, i.e.,

m1 . m2 . . . . . mr = (. . . (m1 . m2) . . . . . mr−1) . mr.

Nevertheless, when designing the process of local computations for com-
positional models in D-S theory, which is intended to be an analogy to the
process proposed by Lauritzen and Spiegelhalter in [10], one needs a type of
associativity (see also [12]) expressed in the following assertion proved in [6].

Proposition 2. Let m1,m2 and m3 be ba’s on XK1 ,XK2 and XK3 , respec-
tively, such that K2 ⊇ K1 ∩K3, and

m↓K1∩K2
1 (C↓K1∩K2) > 0 =⇒ m↓K1∩K2

2 (C↓K1∩K2) > 0.
Then (m1 . m2) . m3 = m1 . (m2 . m3).

Belief Networks and Decomposable Models

In this subsection we introduce a Dempster-Shafer counterpart to GMM’s.
Studying properly probabilistic GMM’s one can realize that it is the notion
of factorization that makes it possible to represent multidimensional prob-
ability distributions efficiently. Focusing only on Bayesian networks one can
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see that they can be defined in probability theory in several different ways.
Here we will proceed according to a rather theoretical approach which defines
a Bayesain network as a probability distribution factorizing with respect to a
given acyclic directed graph (DAG). The factorization guarantees that the in-
dependence structure of a probability distribution represented by a Bayesian
network is in harmony with the well-known d-separation criterion [4, 9].

For Bayesian networks, this factorization principle can be formulated in
the following way (here pa(i) denotes the set of parents of a node i of the
considered DAG, and fam(i) = pa(i)∪{i}): measure π is a Bayesian network
with a DAG G = (N,E) if for each i = 2, . . . , |N | (assuming that this ordering
of nodes is such that k ∈ pa(j) =⇒ k < j) marginal distribution π↓{1,2,...,i}

factorizes with respect to couple ({1, 2, . . . , i − 1}, fam(i)). And this is the
definition which can be directly taken over into Dempster-Shafer theory.

Definition 2 (Belief network). We say that a ba m is a belief network
(BN) with a DAG G = (N,E) if for each i = 2, . . . , |N | (assuming the
enumeration meets the property that k ∈ pa(j) =⇒ k < j) marginal ba
m↓{1,2,...,i} factorizes in the following sense: m↓{1,2,...,i} = m↓{1,2,...,i−1} .
m↓fam(i).

From this definition, which differs from those used in [3, 12], we immedi-
ately get the following description of a BN.

Proposition 3 (Closed form for BN). Let G = (N,E) be a DAG, and
1, 2, . . . , |N | be its nodes ordered in the way that parents are before their
children. Ba m is a BN with graph G if and only if

m = m↓fam(1) . m↓fam(2) . . . . . m↓fam(|N |).

Taking advantage of the notion of factorization which is based on the
operator of composition, we can also introduce decomposable ba’s. In har-
mony with decomposable probability distribution, decomposable ba’s are de-
fined as those factorizing with respect to decomposable graphs, i.e. undirected
graphs whose cliques (maximal sets of nodes inducing complete subgraphs)
C1, C2, . . . , Cr can be ordered to meet the so-called running intersection
property (RIP): for all i = 2, . . . , r there exists j, 1 ≤ j < i, such that
Ki ∩ (K1 ∪ . . . ∪Ki−1) ⊆ Kj .

Definition 3 (Decomposable ba). Consider a decomposable graph G =
(N,F ) with cliques C1, C2, . . . , Cr and assume the cliques are ordered to meet
RIP. We say that a ba m is decomposable (Dba) with respect to G = (N,F )
if for each i = 2, . . . , r marginal ba m↓C1∪...∪Ci factorizes in the following
sense:

m↓C1∪...∪Ci = m↓C1∪...∪Ci−1 . m↓Ci .

Analogously to the closed form for a BN we get also closed form for Dba,
which is again an immediate consequence of the definition.
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Proposition 4 (Closed form for Dba). Let G = (N,F ) be decomposable
with cliques C1, C2, . . . , Cr and assume the cliques are ordered to meet RIP.
Ba m is decomposable with respect to G if and only if

m = m↓C1 . m↓C2 . . . . . m↓Cr .

Conditioning

Unfortunately, there is no generally accepted way of conditioning in D-S
theory. Though we do not have an ambition to fill in this gap, we need a tool
which will enable us to answer questions like: What is a belief for values of
variable Xj if we know that variable Xi has a value a? In probability theory
the answer is given by conditional probability distribution π(Xj |Xi = a). Let
us study a possibility to obtain this conditional distribution with the help of
the probabilistic operator of composition1.

Define a degenerated one-dimensional probability distribution κ|i;a as a
distribution of variable Xi achieving probability 1 for value Xi = a, i.e.,

κ|i;a(Xi = x) =
{

1 if x = a,
0 otherwise.

Now, compute (κ|i;a . π)↓{j} for a probability distribution π of variables XK

with i, j ∈ K:

(κ|i;a . π)↓{j}(y) = ((κ|i;a . π)↓{j,i})↓{j}(y) = (κ|i;a . π↓{j,i})↓{j}(y)

=
∑

x∈Xi

κ|i;a(x) · π↓{j,i}(y, x)
π↓{i}(x)

=
π↓{j,i}(y, a)
π↓{i}(a)

= π↓{j,i}(y|a).

Using an analogy, we consider in this paper that a proper answer to the
above-raised question, in a situation when ba m is taken into consideration,
is given by (m|i;a . m)↓{j} (or rather by the corresponding Bel function),
where m|i;a is a ba on Xi with only one focal element m({a}) = 1. This idea
is moreover supported by the semantics of m|i;a; this ba expresses the fact
that we are sure that variable Xi takes the value a. Therefore m|i;a . m is a
ba arising from m by enforcing it to have a marginal for variable Xi that is
equal to m|i;a (see Property 2 of Proposition 1). In other words it describes
the relationships among all variables from XN which is encoded in m, when
we know that Xi takes value a.

1 In probability theory the operator of composition is defined for distributions π(XK)
and κ(XL), for which π↓K∩L is absolutely continuous with respect to κ↓K∩L, for each
x ∈ XL∪K by the formula

(π . κ)(x) =
π(x↓K)κ(x↓L)

κ↓K∩L(x↓K∩L)
.

For the precise definition and its properties see [5]
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3 Local Computations

As said in Introduction, by local computations we understand a realization
of the ideas published by Lauritzen and Spiegelhalter [10]. They proposed
to compute a conditional probability (as for example π(Xd|Xi = a,Xj =
b,Xk = c)) for a distribution π represented in a form of a Bayesian network
in the following two steps.

1. Bayesian network is transformed into a decomposable model representing
the same probability distribution π;

2. the required conditional distribution is computed by a process consisting of
computations with the marginal distributions corresponding to the cliques
of the respective decomposable graph.

This means that to get the desired conditional distribution one needs to
know only the structure of the decomposable models (e.g. the respective
decomposable graph) and the respective system of marginal distributions.

And it is the goal of this section to show that practically the same com-
putational process can be realized also in D-S theory.

Conversion of a BN into Dba

The process realizing this step can be directly taken over from probability
theory [4]. If G = (N,E) is a DAG of some belief network, then undirected
graph G = (N, Ē), where

Ē =
{
{i, j} ∈

(
N
2
)

: ∃k ∈ N {i, j} ⊆ fam(k)
}
,

is a so-called moral graph from which one can get the necessary decomposable
graph G = (V, F ) (which will be uniquely specified by a system of its cliques
C1, C2, . . . , Cr) by any heuristic approach used for moral graph triangulation
[1] (it is known that the process of looking for an optimal triangulated graph
is a NP hard problem). Then it is an easy task to compute the necessary
marginal ba’s m↓C1 , . . . ,m↓Cr when one realizes that there must exist an or-
dering (let it be the ordering C1, C2, . . . , Cr) of the cliques meeting RIP and
simultaneously

i ∈ pa(j) =⇒ f(i) ≤ f(j),

where f(k) = min(` : k ∈ C`).

Computation of Conditional ba

In comparison with the previous step, this computational process is much
more complex. We have to show that having a decomposable ba m = m↓C1 .
. . . . m↓Cr one can compute (m|i;a . m)↓{j} locally.

For this, we take advantage of the famous fact that if C1, C2, . . . , Cr can be
ordered to meet RIP, then for each k ∈ {1, 2, . . . , r} there exists an ordering
meeting RIP for which Ck is the first one. So consider any Ck for which
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i ∈ Ck, and find the ordering meeting RIP which starts with Ck. Without
loss of generality let it be C1, C2, . . . , Cr (so, i ∈ C1).

Considering ba m decomposable with respect to a graph with cliques
C1, C2, . . . , Cr, our goal is to compute

(m|i;a . m)↓{j} =
(
m|i;a . (m↓C1 . m↓C2 . . . . . m↓Cr )

)↓{j}
.

However, at this moment we have to assume that m↓{i}({a}) is positive.
Under this assumption we can apply Proposition 2 r − 1 times getting

m|i;a . (m↓C1 . m↓C2 . . . . . m↓Cr )

= m|i;a . (m↓C1 . m↓C2 . . . . . m↓Cr−1) . m↓Cr

= . . . = m|i;a . m
↓C1 . m↓C2 . . . . . m↓Cr ,

from which computationally local process2

m̄1 = m|i;a . m
↓C1 ,

m̄2 = m̄↓C2∩C1
1 . m↓C2 ,

m̄3 = (m̄1 . m̄2)↓C3∩(C1∪C2) . m↓C3 ,

...
m̄r = (m̄1 . . . . . m̄r−1)↓Cr∩(C1∪...Cr−1) . m↓Cr ,

yields a sequence m̄1, . . . , m̄r, for which m|i;a . m = m̄1 . . . . . m̄r, and each
m̄k = (m|i;a . m)↓Ck . Therefore, to compute (m|i;a . m)↓{j} it is enough to
find any k such that j ∈ Ck because in this case (m|i;a . m)↓{j} = m̄

↓{j}
k .

This simple idea can be quite naturally generalized in the following sense.
Considering a model with basic assignment m and having a prior information
about values of variables Xi1 = a1, . . . , Xit = at, the goal may be to compute

(m|i1,...,it;a1,...,at
. m)↓{j} = (m|i1;a1 . . . . . m|it;at

. m)↓{j}.

It can be done easily just by repeating the described computational process
as many times as the number of given values (in our case t). This is possible
because ba m|i1;a1 . m = m̄1 . . . . . m̄r is again decomposable and therefore
ba’s m̄1, . . . , m̄r can be again reordered so that the respective sequence of
index sets meets RIP and index i2 belongs to the first index set, and so on.
However, and it is important to stress it, in this case we have to assume
that the combination of given values, which specifies the condition, is a focal
element of ba m, i.e., regarding the condition specified above, we have to
assume that m↓{i1,...,it}({a1, . . . , at}) > 0.

2 Notice that due to the assumption that C1, . . . , Cr meets RIP, for each k there exists `

such that (m̄1 . . . . . m̄k−1)↓Ck∩(C1∪...Ck−1) = m̄
↓Ck∩(C1∪...Ck−1)

` , which ensures locality

of the described computations.
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4 Conclusions

In the paper we have shown that with the help of the operator of composi-
tion it is possible to define BN’s as a D-S counterpart of Bayesian networks.
Moreover, we have shown that under the assumption that a given condition
is a focal element of a ba represented by a BN, one can realize a process
yielding a basic assignment representing a conditional belief. This computa-
tional process can be performed locally, i.e., all the computations involves
only marginal distributions of the respective ba. The only weak point of the
presented approach is that it can be applied only under an additional as-
sumption requiring that the prior information specifying the condition is a
focal element of the ba represented by the given BN.
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de Cooman G, Vejnarová J, Zaffalon M (eds) Proc. of the 5th Symposium on Imprecise
Probabilities and Their Applications, Praha, (2007)

9. Lauritzen, S.L.: Graphical models. Oxford University Press (1996)
10. Lauritzen, S.L., Spiegelhalter, D.J.: Local computation with probabilities on graphical

structures and their application to expert systems. J. of Royal Stat. Soc. series B 50,
157–224 (1988)

11. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Prince-
ton, New Jersey (1976)

12. Shenoy, P.P., Shafer, G.: Axioms for probability and belief-function propagation. In:
Shachter RD, Levitt T, Lemmer JF, Kanal LN (eds) Uncertainty in Artificial Intelli-

gence 4, North-Holland, (1990)


